Docs Cloud AI Agents Remote MCP MCP Server Patterns Patterns for Remote MCP Servers beta This page provides a reference catalog of patterns designed for use with Remote MCP servers in Redpanda Cloud. Use these patterns as building blocks for your own MCP tools. For step-by-step instructions on building, deploying, and testing MCP servers, see Build Remote MCP Servers in Redpanda Cloud. Each pattern is a reusable example for a common MCP tool scenario. Patterns are grouped by use case. All YAML is ready to use in your MCP server project. For a high-level overview of MCP servers, see MCP in Redpanda Cloud. Data generators Use inputs to create tools that read data from internal or external systems or generate sample data for testing and development. This example generates a realistic user event message: label: generate_input generate: mapping: | let event_type = ["login", "logout", "purchase", "view_page", "click_button"].index(random_int(max:4)) root = { "id": uuid_v4(), "timestamp": now().ts_format("2006-01-02T15:04:05.000Z"), "user_id": random_int(min:1, max:10000), "event_type": $event_type, "data": { "session_id": ksuid(), "ip_address": "192.168.%v.%v".format(random_int(max:255), random_int(min:1, max:254)), "user_agent": ["Chrome", "Firefox", "Safari", "Edge"].index(random_int(max:3)), "amount": if $event_type == "purchase" { random_int(min:10, max:500) } else { null } } } meta: mcp: enabled: true description: "Generate an example user event message with realistic data" properties: [] See also: generate input component External API calls Use processors to fetch data from external APIs, databases, or services and return formatted results. This is one of the most common patterns for MCP tools. label: fetch-weather processors: - label: prepare_parameters mutation: | meta city_name = this.city_name - label: fetch_weather http: url: 'https://wttr.in/${! @city_name }?format=j1' verb: GET headers: Accept: "application/json" User-Agent: "redpanda-mcp-server/1.0" - label: format_response mutation: | root = { "city": @city_name, "temperature": this.current_condition.0.temp_C.number(), "feels_like": this.current_condition.0.FeelsLikeC.number(), "humidity": this.current_condition.0.humidity.number(), "pressure": this.current_condition.0.pressure.number(), "description": this.current_condition.0.weatherDesc.0.value, "wind_speed": this.current_condition.0.windspeedKmph.number(), "metadata": { "source": "wttr.in", "fetched_at": now().ts_format("2006-01-02T15:04:05.000Z") } } meta: mcp: enabled: true description: "Fetch current weather information for a specified city" properties: - name: city_name type: string description: "Name of the city to get weather information for" required: true See also: http processor, mutation processor Database queries Query external databases and return structured results. This pattern is essential for tools that need to access business data. label: gcp_bigquery_select_processor processors: - label: prepare_parameters mutation: | meta customer_id = this.customer_id.string().catch("12345") meta limit = this.limit.number().catch(10) - label: query_bigquery gcp_bigquery_select: project: my-gcp-project credentials_json: | ${secrets.BIGQUERY_CREDENTIALS} table: my_dataset.customer_orders columns: - "order_id" - "customer_id" - "order_date" - "total_amount" - "status" where: customer_id = ? AND order_date >= DATE_SUB(CURRENT_DATE(), INTERVAL 30 DAY) suffix: "ORDER BY order_date DESC LIMIT ?" args_mapping: root = [ @customer_id, @limit ] - label: format_response mutation: | root = { "orders": this, "metadata": { "source": "BigQuery", "customer_id": @customer_id, "fetched_at": now().ts_format("2006-01-02T15:04:05.000Z") } } meta: mcp: enabled: true description: "Query customer orders from BigQuery" properties: - name: customer_id type: string description: "Customer ID to filter orders" required: true - name: limit type: number description: "Maximum number of orders to return" required: false See also: gcp_bigquery_select processor, sql_select processor (for other databases) Redpanda integration and data publishing Use these patterns when you need to integrate with Redpanda infrastructure, publish data to topics, or implement caching systems. Data publishers (output patterns) Use outputs to send data to external systems or build caching systems. This example publishes a message to a Redpanda topic: label: redpanda_output redpanda: seed_brokers: - ${REDPANDA_BROKERS} topic: ${! this.topic_name.string().catch("default-topic") } timeout: 30s tls: enabled: true sasl: - mechanism: SCRAM-SHA-256 username: ${secrets.REDPANDA_USERNAME} password: ${secrets.REDPANDA_PASSWORD} meta: mcp: enabled: true description: Publishes a message to a specified Redpanda topic properties: - name: message type: string description: The message content to publish required: true - name: topic_name type: string description: The Redpanda topic to publish to required: true See also: redpanda output Caching systems Use caching to store frequently accessed data, reduce latency, and minimize external API calls. You can implement caching using either Redpanda topics or in-memory stores. label: redpanda_cache redpanda: seed_brokers: ["${REDPANDA_BROKERS}"] topic: "mcp-cache-topic" tls: enabled: true sasl: - mechanism: "SCRAM-SHA-512" username: "${secrets.MCP_REDPANDA_CREDENTIALS.username}" password: "${secrets.MCP_REDPANDA_CREDENTIALS.password}" meta: mcp: enabled: true description: "Redpanda-backed distributed cache using Kafka topics for persistence" This example implements an in-memory cache for low-latency access to small datasets: label: memory_cache memory: default_ttl: "5m" init_values: "user:1001": '{"name": "Alice", "role": "admin"}' "user:1002": '{"name": "Bob", "role": "user"}' "config:theme": "dark" "config:language": "en" shards: 4 meta: mcp: enabled: true description: "In-memory cache for storing user data, configuration, and temporary values" See also: memory cache, Redpanda-backed cache using redpanda output Production workflows and observability Build enterprise-grade tools with error handling, validation, multi-step workflows, and monitoring. Parameter validation and type coercion Always validate and coerce input parameters to ensure your tools are robust: processors: - label: validate_params mutation: | # Validate required parameters root = if !this.exists("user_id") { throw("user_id parameter is required") } else { this } # Type coercion with validation meta user_id = this.user_id.string() meta limit = this.limit.number().catch(10) meta start_date = this.start_date.parse_timestamp("2006-01-02").catch(now() - duration("24h")) Dynamic configuration Build tools that adapt their behavior based on input parameters: processors: - label: dynamic_config mutation: | # Choose data source based on environment meta env = this.environment | "production" meta table_name = match @env { "dev" => "dev_orders", "staging" => "staging_orders", "production" => "prod_orders", _ => "dev_orders" } # Adjust query complexity based on urgency meta columns = if this.detailed.bool().catch(false) { ["order_id", "customer_id", "total", "items", "shipping_address"] } else { ["order_id", "customer_id", "total"] } Error handling and fallbacks Implement error handling to make your tools reliable: processors: - label: primary_fetch try: - http: url: "https://api.primary.com/data" timeout: "10s" catch: - log: message: "Primary API failed, trying fallback" - label: fallback_fetch http: url: "https://api.fallback.com/data" timeout: "15s" - mutation: | root.metadata.source = "fallback" root.metadata.warning = "Primary source unavailable" Conditional processing Build tools that branch based on input or data characteristics: processors: - label: conditional_processing switch: - check: this.data_type == "json" processors: - json: operator: "parse" - mutation: 'root.parsed_data = this' - check: this.data_type == "csv" processors: - csv: parse: true - mutation: 'root.parsed_data = this' - processors: - mutation: 'root.error = "Unsupported data type"' Secrets and credentials Securely handle multiple credentials and API keys. Here is an example of using an API key secret. Create a secret in the Secrets Store with name EXTERNAL_API_KEY and your API key as the value. Reference the secret in your YAML configuration: processors: - label: call_external_api http: url: "https://api.example.com/data" verb: GET headers: Authorization: "Bearer ${secrets.EXTERNAL_API_KEY}" (1) Accept: "application/json" 1 The secret is injected at runtime. Never store the actual API key in your YAML configuration. The actual secret value never appears in your configuration files or logs. Monitoring, debugging, and observability Use structured logging, request tracing, and performance metrics to gain insights into tool execution. label: observable_tool processors: - label: init_tracing mutation: | # Generate correlation ID for request tracing meta req_id = uuid_v7() meta start_time = now() # Log request start with structured data root.trace = { "request_id": @req_id, "timestamp": @start_time.ts_format("2006-01-02T15:04:05.000Z"), "tool": "observable_tool", "version": "1.0.0" } - label: log_request_start log: message: "MCP tool request started" fields: request_id: "${! @req_id }" tool_name: "observable_tool" input_params: "${! this.without(\"trace\") }" user_agent: "${! meta(\"User-Agent\").catch(\"unknown\") }" level: "INFO" - label: finalize_response mutation: | # Calculate total execution time meta duration = (now().ts_unix_nano() - @start_time.ts_unix_nano()) / 1000000 # Add trace information to response root.metadata = { "request_id": @req_id, "execution_time_ms": @duration, "timestamp": now().ts_format("2006-01-02T15:04:05.000Z"), "tool": "observable_tool", "success": !this.exists("error") } - label: log_completion log: message: "MCP tool request completed" fields: request_id: "${! @req_id }" duration_ms: "${! this.metadata.execution_time_ms }" success: "${! this.metadata.success }" result_size: "${! content().length() }" level: "INFO" meta: tags: [ example ] mcp: enabled: true description: "Example tool with comprehensive observability and error handling" properties: - name: user_id type: string description: "User ID to fetch data for" required: true Observability features: Correlation IDs: Use uuid_v7() to generate unique request identifiers for tracing Execution timing: Track how long your tools take to execute using nanosecond precision Structured logging: Include consistent fields like request_id, duration_ms, tool_name Request/response metadata: Log input parameters and response characteristics Success tracking: Monitor whether operations complete successfully You can test this pattern by invoking the tool with valid and invalid parameters, and observe the structured logs for tracing execution flow. For example, with a user ID of 1, you might see logs like: { "metadata": { "execution_time_ms": 0.158977, "request_id": "019951ab-d07d-703f-aaae-7e1c9a5afa95", "success": true, "timestamp": "2025-09-16T08:37:18.589Z", "tool": "observable_tool" }, "trace": { "request_id": "019951ab-d07d-703f-aaae-7e1c9a5afa95", "timestamp": "2025-09-16T08:37:18.589Z", "tool": "observable_tool", "version": "1.0.0" }, "user_id": "1" } Multi-step data enrichment Build tools that combine data from multiple sources. This workflow fetches customer data from a SQL database, enriches it with recent order history, and computes summary metrics. label: customer_enrichment processors: - label: fetch_customer_base sql_select: driver: "postgres" dsn: "${secrets.POSTGRES_DSN}" table: "customers" where: "customer_id = ?" args_mapping: 'root = [this.customer_id]' - label: enrich_with_orders sql_select: driver: "postgres" dsn: "${secrets.POSTGRES_DSN}" table: "orders" where: "customer_id = ? AND created_at >= NOW() - INTERVAL '30 days'" args_mapping: 'root = [this.customer_id]' - label: combine_data mutation: | root = { "customer": this.customers.index(0), "recent_orders": this.orders, "metrics": { "total_orders": this.orders.length(), "total_spent": this.orders.map_each(o -> o.total).sum(), "avg_order_value": this.orders.map_each(o -> o.total).mean() } } meta: mcp: enabled: true description: "Get comprehensive customer profile with recent order history and metrics" properties: - name: customer_id type: string description: "Customer ID to analyze" required: true See also: sql_select processor, Bloblang functions (for data manipulation and aggregations) Workflow orchestration Coordinate complex workflows with multiple steps and conditional logic. This workflow simulates a complete order processing pipeline with mock data for inventory and processing tiers. This allows you to test the full logic without needing real external systems. label: order_workflow processors: - label: validate_order mutation: | # Validation logic root = if this.total <= 0 { throw("Invalid order total") } else { this } - label: mock_inventory_check mutation: | # Mock inventory data for testing let inventory = { "widget-001": {"quantity": 100, "name": "Standard Widget"}, "widget-premium": {"quantity": 25, "name": "Premium Widget"}, "widget-limited": {"quantity": 2, "name": "Limited Edition Widget"} } let product = $inventory.get(this.product_id) root = if $product == null { throw("Product not found: " + this.product_id) } else if $product.quantity < this.quantity { throw("Insufficient inventory. Available: " + $product.quantity.string()) } else { this.merge({ "inventory_check": "passed", "available_quantity": $product.quantity, "product_name": $product.name }) } - label: route_by_priority switch: - check: 'this.total > 1000' processors: - label: mock_high_value_processing mutation: | # Mock premium processing root = this.merge({ "processing_tier": "premium", "processing_time_estimate": "2-4 hours", "assigned_rep": "premium-team@company.com", "priority_score": 95 }) - check: 'this.customer_tier == "vip"' processors: - label: mock_vip_processing mutation: | # Mock VIP processing root = this.merge({ "processing_tier": "vip", "processing_time_estimate": "1-2 hours", "assigned_rep": "vip-team@company.com", "priority_score": 90, "perks": ["expedited_shipping", "white_glove_service"] }) - processors: - label: mock_standard_processing mutation: | # Mock standard processing root = this.merge({ "processing_tier": "standard", "processing_time_estimate": "24-48 hours", "assigned_rep": "support@company.com", "priority_score": 50 }) - label: finalize_order mutation: | # Add final processing metadata # Calculate estimated fulfillment by parsing processing time let max_hours = this.processing_time_estimate.split("-").index(1).split(" ").index(0).number() root = this.merge({ "order_status": "processed", "processed_at": now().ts_format("2006-01-02T15:04:05.000Z"), "estimated_fulfillment": "TBD - calculated based on processing tier", "processing_time_hours": $max_hours }) meta: mcp: enabled: true description: "Process orders with validation, inventory check, and tiered routing (with mocks for testing)" properties: - name: order_id type: string description: "Unique order identifier" required: true - name: product_id type: string description: "Product ID (try: widget-001, widget-premium, widget-limited)" required: true - name: quantity type: number description: "Quantity to order" required: true - name: total type: number description: "Order total in dollars" required: true - name: customer_tier type: string description: "Customer tier (optional: vip, standard)" required: false For the input {"order_id": "ORD001", "product_id": "widget-001", "quantity": 5, "total": 250, "customer_tier": "vip"}, the workflow produces: { "assigned_rep": "vip-team@company.com", "available_quantity": 100, "customer_tier": "vip", "estimated_fulfillment": "TBD - calculated based on processing tier", "inventory_check": "passed", "order_id": "ORD001", "order_status": "processed", "perks": [ "expedited_shipping", "white_glove_service" ], "priority_score": 90, "processed_at": "2025-09-16T09:05:29.138Z", "processing_tier": "vip", "processing_time_estimate": "1-2 hours", "processing_time_hours": 2, "product_id": "widget-001", "product_name": "Standard Widget", "quantity": 5, "total": 250 } Notice how the workflow: Preserves original input: order_id, product_id, quantity, total, and customer_tier pass through unchanged. Adds inventory data: available_quantity, product_name, and inventory_check status from the mock lookup. Routes by customer tier: Since customer_tier is "vip", it gets VIP processing with special perks and priority. Enriches with processing metadata: assigned_rep, priority_score, processing_tier, and time estimates. Finalizes with timestamps: order_status, processed_at, and calculated processing_time_hours. Suggested reading Components overview Bloblang guide Secret management Back to top × Simple online edits For simple changes, such as fixing a typo, you can edit the content directly on GitHub. Edit on GitHub Or, open an issue to let us know about something that you want us to change. Open an issue Contribution guide For extensive content updates, or if you prefer to work locally, read our contribution guide . Was this helpful? thumb_up thumb_down group Ask in the community mail Share your feedback group_add Make a contribution 🎉 Thanks for your feedback! Admin Guide Redpanda Connect