Docs Connect Components Processors gcp_vertex_ai_chat gcp_vertex_ai_chat Beta Available in: Cloud, Self-Managed License: This component requires an enterprise license. You can either upgrade to an Enterprise Edition license, or generate a trial license key that's valid for 30 days. Generates responses to messages in a chat conversation, using the Vertex API AI. Introduced in version 4.34.0. Common Advanced # Common configuration fields, showing default values label: "" gcp_vertex_ai_chat: project: "" # No default (required) credentials_json: "" # No default (optional) location: us-central1 # No default (optional) model: gemini-1.5-pro-001 # No default (required) prompt: "" # No default (optional) temperature: 0 # No default (optional) max_tokens: 0 # No default (optional) response_format: text # All configuration fields, showing default values label: "" gcp_vertex_ai_chat: project: "" # No default (required) credentials_json: "" # No default (optional) location: us-central1 # No default (optional) model: gemini-1.5-pro-001 # No default (required) prompt: "" # No default (optional) system_prompt: "" # No default (optional) temperature: 0 # No default (optional) max_tokens: 0 # No default (optional) response_format: text top_p: 0 # No default (optional) top_k: 0 # No default (optional) stop: [] # No default (optional) presence_penalty: 0 # No default (optional) frequency_penalty: 0 # No default (optional) This processor sends prompts to your chosen large language model (LLM) and generates text from the responses, using the Vertex AI API. For more information, see the Vertex AI documentation. Fields project The GCP project ID to use. Type: string credentials_json An optional field to set a Google Service Account Credentials JSON. This field contains sensitive information that usually shouldn’t be added to a configuration directly. For more information, see Secrets. Type: string location Specify the location of a fine tuned model. For base models, you can omit this field. Type: string # Examples location: us-central1 model The name of the LLM to use. For a full list of models, see the Vertex AI Model Garden. Type: string # Examples model: gemini-1.5-pro-001 model: gemini-1.5-flash-001 prompt The prompt you want to generate a response for. By default, the processor submits the entire payload as a string. This field supports interpolation functions. Type: string system_prompt The system prompt to submit to the Vertex AI LLM. This field supports interpolation functions. Type: string temperature Controls the randomness of predictions. Type: float max_tokens The maximum number of output tokens to generate per message. Type: int response_format The format of the generated response. You must also prompt the model to output the appropriate response type. Type: string Default: "text" Options: text , json . top_p Enables nucleus sampling (optional). Type: float top_k Enables top-k sampling (optional). Type: int stop Sets the stop sequences to use. When this pattern is encountered the LLM stops generating text and returns the final response. Type: array presence_penalty Positive values penalize new tokens if they appear in the text already, increasing the model’s likelihood to include new topics. Type: float frequency_penalty Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model’s likelihood to repeat the same line verbatim. Type: float Back to top × Simple online edits For simple changes, such as fixing a typo, you can edit the content directly on GitHub. Edit on GitHub Or, open an issue to let us know about something that you want us to change. Open an issue Contribution guide For extensive content updates, or if you prefer to work locally, read our contribution guide . Was this helpful? thumb_up thumb_down group Ask in the community mail Share your feedback group_add Make a contribution gcp_bigquery_select gcp_vertex_ai_embeddings