gcp_vertex_ai_chat
Generates responses to messages in a chat conversation, using the Vertex API AI.
Introduced in version 4.34.0.
-
Common
-
Advanced
# Common configuration fields, showing default values
label: ""
gcp_vertex_ai_chat:
project: "" # No default (required)
credentials_json: "" # No default (optional)
location: us-central1 # No default (optional)
model: gemini-1.5-pro-001 # No default (required)
prompt: "" # No default (optional)
temperature: 0 # No default (optional)
max_tokens: 0 # No default (optional)
response_format: text
# All configuration fields, showing default values
label: ""
gcp_vertex_ai_chat:
project: "" # No default (required)
credentials_json: "" # No default (optional)
location: us-central1 # No default (optional)
model: gemini-1.5-pro-001 # No default (required)
prompt: "" # No default (optional)
system_prompt: "" # No default (optional)
temperature: 0 # No default (optional)
max_tokens: 0 # No default (optional)
response_format: text
top_p: 0 # No default (optional)
top_k: 0 # No default (optional)
stop: [] # No default (optional)
presence_penalty: 0 # No default (optional)
frequency_penalty: 0 # No default (optional)
This processor sends prompts to your chosen large language model (LLM) and generates text from the responses, using the Vertex AI API.
For more information, see the Vertex AI documentation.
Fields
attachment
Additional data like an image to send with the prompt to the model. The result of the mapping must be a byte array, and the content type is automatically detected.
Requires version 4.38.0 or later.
Type: string
# Examples:
attachment: root = this.image.decode("base64") # decode base64 encoded image
credentials_json
An optional field to set a Google Service Account Credentials JSON.
This field contains sensitive information that usually shouldn’t be added to a configuration directly. For more information, see Secrets. |
Type: string
frequency_penalty
Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model’s likelihood to repeat the same line verbatim.
Type: float
history
Historical messages to include in the chat request. The result of the bloblang query should be an array of objects of the form of [{"role": "", "content":""}], where role is "user" or "model".
Type: string
location
Specify the location of a fine tuned model. For base models, you can omit this field.
Type: string
# Examples:
location: us-central1
model
The name of the LLM to use. For a full list of models, see the Vertex AI Model Garden.
Type: string
# Examples:
model: gemini-1.5-pro-001
model: gemini-1.5-flash-001
presence_penalty
Positive values penalize new tokens if they appear in the text already, increasing the model’s likelihood to include new topics.
Type: float
prompt
The prompt you want to generate a response for. By default, the processor submits the entire payload as a string. This field supports interpolation functions.
Type: string
response_format
The format of the generated response. You must also prompt the model to output the appropriate response type.
Type: string
Default: text
Options: text
, json
stop[]
Sets the stop sequences to use. When this pattern is encountered the LLM stops generating text and returns the final response.
Type: array
system_prompt
The system prompt to submit to the Vertex AI LLM. This field supports interpolation functions.
Type: string
tools[]
The tools to allow the LLM to invoke. This allows building subpipelines that the LLM can choose to invoke to execute agentic-like actions.
Type: object
Default: []
tools[].description
A description of this tool, the LLM uses this to decide if the tool should be used.
Type: string